skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hayes, Jane Huffman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional high performance computing (HPC) centers that operate a single large supercomputer cluster have not required sophisticated mechanisms to manage and enforce network policies. Recently, HPC centers have expanded to support a wide range of computational infrastructure, such as OpenStack-based private clouds and Ceph object stores, each with its own unique characteristics and network security requirements. Network security policies are becoming more complex and harder to manage. To address the challenge, this paper explores ways to define and manage the new network policies required by emerging HPC systems. As the first step, we identify the new types of policies that are required and the technical capabilities needed to support them. We present example policies and discuss ways to implement those policies using emerging programmable networks and intent-based networks. We describe our initial work toward automatically converting human readable network policies into network configurations and programmable network controllers that implement those policies using business rule management systems. 
    more » « less
  2. Research must be reproducible in order to make an impact on science and to contribute to the body of knowledge in our field. Yet studies have shown that 70% of research from academic labs cannot be reproduced. In software engineering, and more specifically requirements engineering (RE), reproducible research is rare, with datasets not always available or methods not fully described. This lack of reproducible research hinders progress, with researchers having to replicate an experiment from scratch. A researcher starting out in RE has to sift through conference papers, finding ones that are empirical, then must look through the data available from the empirical paper (if any) to make a preliminary determination if the paper can be reproduced. This paper addresses two parts of that problem, identifying RE papers and identifying empirical papers within the RE papers. Recent RE and empirical conference papers were used to learn features and to build an automatic classifier to identify RE and empirical papers. We introduce the Empirical Requirements Research Classifier (ERRC) method, which uses natural language processing and machine learning to perform supervised classification of conference papers. We compare our method to a baseline keyword-based approach. To evaluate our approach, we examine sets of papers from the IEEE Requirements Engineering conference and the IEEE International Symposium on Software Testing and Analysis. We found that the ERRC method performed better than the baseline method in all but a few cases. 
    more » « less